Polynomial Solutions and Annihilators of Ordinary Integro-Differential Operators ?

نویسندگان

  • Alban Quadrat
  • Georg Regensburger
چکیده

In this paper, we study algorithmic aspects of linear ordinary integro-differential operators with polynomial coefficients. Even though this algebra is not noetherian and has zero divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory. For an algorithmic approach to linear systems theory of integro-differential equations with boundary conditions, computing the kernel of matrices is a fundamental task. As a first step, we have to find annihilators, which is, in turn, related to polynomial solutions. We present an algorithmic approach for computing polynomial solutions and the index for a class of linear operators including integro-differential operators. A generating set for right annihilators can be constructed in terms of such polynomial solutions. For initial value problems, an involution of the algebra of integro-differential operators also allows us to compute left annihilators, which can be interpreted as compatibility conditions of integro-differential equations with boundary conditions. We illustrate our approach using an implementation in the computer algebra system Maple. Finally, system-theoretic interpretations of these results are given and illustrated on integro-differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Skew Polynomial Approach to Integro - Differential Operators Georg

We construct the algebra of integro-differential operators over an ordinary integro-differential algebra directly in terms of normal forms. In the case of polynomial coefficients, we use skew polynomials for defining the integro-differential Weyl algebra as a natural extension of the classical Weyl algebra in one variable. Its normal forms, algebraic properties and its relation to the localizat...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces

Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013